A characteristic property of Euclidean spaces
نویسندگان
چکیده
منابع مشابه
A Characterization of Euclidean Spaces
The purpose of this paper is to give an elementary proof of the fact that a Banach space in which there exist projection transformations of norm one on every two-dimensional linear subspace is a euclidean space. S. Kakutani [ l ] has pointed out that a modification of a proof due to Blaschke [2] will prove this theorem. F. Bohnenblust has been able to establish this theorem for the complex case...
متن کاملA characteristic property of spherical caps
It is proved that given H ≥ 0 and an embedded compact orientable constant mean curvature H surface M included in the half space z ≥ 0, not everywhere tangent to z = 0 along its boundary ∂M = γ ⊂ {z = 0}, the inequality H ≤ (min κ) ( min √ 1 − (κg/κ) ) is satisfied, where κ and κg are the geodesic curvatures of γ on z = 0 and on the surface M , respectively, if and only if M is a spherical cap o...
متن کاملA new characteristic property of rich words
Originally introduced and studied by the third and fourth authors together with J. Justin and S. Widmer (2008), rich words constitute a new class of finite and infinite words characterized by containing the maximal number of distinct palindromes. Several characterizations of rich words have already been established. A particularly nice characteristic property is that all ‘complete returns’ to p...
متن کاملSpatial Analysis in curved spaces with Non-Euclidean Geometry
The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 1964
ISSN: 0004-2080
DOI: 10.1007/bf02591133